Complex Shape EUV Extreme-Ultraviolet Patterning : EUV Resist Process Optimization and Dry Etch Solutions for Defect Reduction and Cross-Wafer Uniformity Improvements

Yashvi Singh¹, Jasmine Chang², Howard Chen², Amit Ohri¹, Nick Lin², Chi-Sheng Chang¹ Micron Technology USA¹, Micron Technology Taiwan²

> Author: Yashvi Singh **DRAM Process Integration** Micron Technology GSA WLI WISH 2024

Agenda

A.Introduction

B.Defect Reduction in Complex Patterns through EUV Track Developer Optimization

C.Dry Etch Optimization and Uniformity Tuning for Complex EUV Pattern

- Mechanism I
- Mechanism 2
- Mechanism 3

D.Conclusion

Importance of Surface Area For Semiconductor Devices

More Complex Patterning Solutions are needed for delivering memory needs of the Future

Must overcome Drawbacks of current EUV Lithography and Dry Etch Technology to provide solutions for Complex Patterns sub 10 nm pitch

Key Solutions For Defect Reduction and Cross-Wafer Uniformity: EUV Resist Process Optimization and Dry Etch Solutions

Defect Reduction in Complex Patterns through EUV Track Developer Optimization

Problem Statement

Conventional Nozzles lead to heavy center-of-wafer (CoW) bridging defects. The complex pattern is very sensitive to developer flow dynamics at the litho step, leading to lower resist scumming margin and consequently blocked etch

Post Hardmask Etch Transfer CoW Bridging Defects

"New Developer Nozzle" for Positive Tone Developer (PTD) was a breakthrough to Significantly Improve Defectivity (100% to < 1%)

Process Flow of "New Developer Nozzle"

Parameters Optimized in "New Developer Nozzle"

Pre-Wet: Minimize time difference in the initial application of developer solution

"ND"nozzle

"ND"nozzle

• **Puddle Formation** : Formed with lower spin speed application; CD Profile is controlled with scan process

• **Puddle** : Process enables uniform resist development across wafers

Developer parameter

• Developer evenly distributed across wafer; spin time & spin speed is increased.

Addition of Dynamic Puddle

• More developer reaction time added to infiltrate the hole pattern.

Defect Reduction Rinse Control

• Spin speed during scan rinse made same as centrifugal force which helps EUV resist to maintain hydrophobicity

Dry Etch Optimization and Uniformity Tuning for Complex EUV Pattern

Challenges In Etching Complex EUV Pattern

CD 2 erodes faster than CD 1 causing high CD 3 loss (CD $3 = CD$ $2 - CD$ 1), i.e., lesser overall surface area), especially at the wafer edge

Solution: Descum Step (DS) is the Main Parameter to enable good uniformity of CD 3 from wafer center to edge

Dry Etch Parameters Design of Experiment (DOE)

Effect of novel tuning parameters identified on CD (critical dimension), CDU (critical dimension uniformity) and LCDU (local critical dimension uniformity) of features 1, 2 & 3

i Inductively coupled plasma etching ii Duty Cycle iii Electrostatic Chuck temperature I feature 2 feature 3 feature d 4-Zone Sync adjustment e 4-Zone out of sync adjustment • decrease \bullet - decrease some change standard condition/no change \blacksquare + increase $+$ ++ increase

+++ increase

Main parameters under
Descum Step Descum Time N_2 /CH₂ F_2 gas RF Pulsing Duty

flow rate

Cycle

CD3=CD2-CD1

 $CD₂$

CD I

Mechanism 1: Descum Time impact on CD 3

Descum time is the key step for tuning CD 1 and CD 2

SEM data of incoming EUV Resist profile and Etch Movie at wafer edge

a: Delta CD 2 for POR and Longer Descum Time, \downarrow : Improved, ~: Comparable

Longer descum makes dry etch profile straighter by $\sim 5^{\circ}$ on the hard mask and underlayer mandrel, preventing mask erosion of CD 3

Larger CD 2 and CD 3 : lean fluorine etch chemistry and more polymer deposition

> Lean fluorine chemistry helps minimize Film1 lateral etch during mask open step

> > More polymer deposition enables squared profile of resist and Film1, even with tapered incoming resist profile

Mechanism 2: Cross wafer CD 3 CDU improvement through Descum Time

Sufficient Descum Time provides more polymer deposition to protect resist and mitigate wafer edge non-uniformity

micron

CDU : Critical Dimension Uniformity

Tighter spaces between CD 2 experience enhanced ion reflection effect which causes higher CD degradation of feature 2, decreasing overall surface area

Incoming and reflected ion fluxes for the sidewall of a trench, projected to x–y plane

Sufficient descum time provides more deposition to protect resist and mitigate wafer edge nonuniformity, thereby increasing surface area even at wafer edge

CD & Defect count vs Descum time skew

Sufficient descum time improves CD 3 uniformity and reduces bridging defects

Mechanism 3: CD 3 Local CDU Optimization through Polymer Deposition Tuning

CD and LCDU metrics improved with Gas Flow Rate, RF Pulsing Duty Cycle and Trim Time adjustments at Descum and Trim steps

micron

LCDU : Local Critical Dimension Uniformity

Impact of Polymer Deposition on CD 2 Profile

Longer Descum Time does not impact profile and has no byproduct clogging

micron

 $CD₂$

Methodology : Key Parameters affecting CD 3 LCDU

DOE Prediction Profiler of DS step and Trim Step (Delta: Resist CD minus post etch CD)

flow

CD, LCDU & Defectivity Impact with DS $N₂ /CH₂F₂$ Gas Flow and Trim Time

 N_2 /CH₂F₂ gas flow rate adjustment in descum step helps achieve desired polymer deposition amount and CD uniformity

At higher flow rates, CD 3 edge roll off is lower suggesting polymer has higher impact on etching the chamber wall film compared to fluorine gas chemistry

High gas Low gas Low gas flow **Baseline** flow rate flow rate $rate + Trim$ POR. 1st Phase 1st Phase Trim $P 8^*q+$ $N₂/CH₂F₂$ $N₂/ CH₂F₂$ $N₂/CH₂F₂$ $N₂/CH₂F₂$ $0.7[*]$ r/ $0.7[*]$ s r/s $1.5[*]$ r/ $1.5[*]$ s $0.8*$ r/ $0.8*$ s Std Dev: 4.7 Std Dev: 5.1 Std Dev: 4.9 Std Dev: 3.1 $CD I(A)$ Std Dev: 2.7 Std Dev: 3.0 Std Dev: 2.2 Std Dev: 1.9 $CD 2(A)$ Std Dev: 3.7 Std Dev: 3.4 Std Dev: 3.8 Std Dev: 2.6 $CD 3(A)$ $CD2$ Std **CD 1 & CD 2** $LCDU(A)$ 80 120 0 120_n $120₀$ 40 40 Radius (mm) **Bridging Defects TD 24k TD 0.6k TD 2.4k TD 1.6k Broken Defects** TD₉ TD 13 TD₆ TD₈

Defect Count

 $(r : N₂ sccm, s : CH₂F₂ sccm, q : pressure mT, TD : Total Defect count)$

Conclusion

For EUV patterning on complex pattern sub 10 nm solutions were provided to

- Enable large and uniform surface area for patterning
- Enable low Local Critical Dimension Uniformity
- Minimize Defects from EUV lithography and Dry Etch technology

Acknowledgment

We would like to acknowledge the contributions of TEL team in helping resolve EUV resist defectivity issue and thank them for great collaboration. We would also like to thank and acknowledge various Micron teams across Boise and Taiwan including Process Integration, Process Technology, RDA, Metrology, Characterization, and Operations team.

Thank you

Yashvi Singh

Micron Technology

www.linkedin.com/in/yashvi-singh

Novel Complex EUV Pattern

 CD | = line CD CD 2 = spherical curvature CD CD 3 = CD 2 – CD 1

CD= Critical Dimension

Appendix

1st phase Film1 Dry Etch, descumtrim cycle implemented to preserve EUV mask shape

micron

• Descum: Etch Film I + Dep on Resist to preserve mask shape

• Trim:Trim Resist + Etch Film I, increase trim capability to mitigate micro bridging caused by descum deposition

Table Bridging and Broken EDL comparison of DS Gas Skew. (a: Baseline)

EDL: Estimated Die Loss

